Tensorflow
import tensorflow as tf
How to set up a tensorflow code.
Because tensorflow is mostly written in C++ for an increase of speed and for the addvatage that C++ is “closer” to the hardward we have to think of tensorflow code a bit different.
Learn by doing:
Start with the input and output variables x and y:
x = tf.Placeholders(dtype=float, shape=[how_many_samples = ?,shape_of_output=200])
y = tf.Placeholder(dtype=float, shape=[how_many_samples = ?,shape_of_output=10])
In tensorflow we define all the variables goes backend and displace the results.
If we think of an ordinairy function in python we have:
def f(x,y):
Because tensorflow is run in the background the way to define the inputs to the neural network is done by tf.placeholders
.
You will see later that we use these placeholders to feed the inputs to the neural network using python sess.run([what to run],feed_dict={x: inputs, y: outputs})
Weights
To create the weights in tensorflow we can use different types of structures like list or dict.
As seen in the Netural Networks page the weights are structured as matrices with shape (size layer i,size layer i+1). So in this example we have a neuralnet with size
w = {"w0":tf.Variable(tf.random_normal([input_size, n_nodes_hl3],stddev=1),name="w1"),
"w1":tf.Variable(tf.random_normal([input_size, n_nodes_hl4],stddev=3),name="w1"),
"w2" :tf.Variable(tf.random_normal([n_nodes_hl4, n_nodes_hl5],stddev=2),name="w2"),
"w3":tf.Variable(tf.random_normal([n_nodes_hl5, n_nodes_hl6],stddev=1),name="w3"),
"w4":tf.Variable(tf.random_normal([n_nodes_hl6, n_classes],stddev=1),name="w4_out")}
or
w = [tf.Variable(tf.random_normal([input_size, n_nodes_hl3],stddev=1),name="w1"),
tf.Variable(tf.random_normal([input_size, n_nodes_hl4],stddev=3),name="w1"),
tf.Variable(tf.random_normal([n_nodes_hl4, n_nodes_hl5],stddev=2),name="w2"),
tf.Variable(tf.random_normal([n_nodes_hl5, n_nodes_hl6],stddev=1),name="w3"),
tf.Variable(tf.random_normal([n_nodes_hl6, n_classes],stddev=1),name="w4_out")]
random_normal
Returns an array with N(0,1)(as standard) distributed array.
random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)
Outputs random values from a normal distribution.
Args:
shape: A 1-D integer Tensor or Python array. The shape of the output tensor.
mean: A 0-D Tensor or Python value of type `dtype`. The mean of the normal
distribution.
stddev: A 0-D Tensor or Python value of type `dtype`. The standard deviation
of the normal distribution.
dtype: The type of the output.
seed: A Python integer. Used to create a random seed for the distribution.
See
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
for behavior.
name: A name for the operation (optional).
Returns:
A tensor of the specified shape filled with random normal values.